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Abstract—We propose and experimentally demonstrate a
method of exploiting prior knowledge of a signal’s sparsity
to perform super-resolution in various optical measurements,
including: single-shot sub-wavelength Coherent Diffractive Imag-
ing (CDI), i.e. algorithmic object reconstruction from Fourier
amplitude measurements, and ultra-fast pulse measurement, i.e.
exceeding the temporal resolution imposed by the rise time of
the photodiode. The prior knowledge of the signal’s sparsity
compensates for the loss of phase information and the loss of
high spatial frequencies in the case of CDI, and for the loss of
temporal frequencies accompanying the photodiode measurement
process.

I. INTRODUCTION

Many problems in Optics are ill posed inverse problems.
These include for example - lensless imaging (also known
as CDI [1], [2]), in which the goal is to recover an object
from the measurement of its Fourier magnitude, imaging in
sub-wavelength resolution, and measuring an ultrafast pulse
using a relatively slow measurement device (photodiode). In
these cases, some kind of prior knowledge can be used to help
regularize the problem. In this work we demonstrate that such
prior knowledge can be that the sought object is sparse in a
representation that is either known or taken from a known set.

In Section II we demonstrate the application of the prior
knowledge of sparsity to help solve the sub-wavelength CDI
problem, in which it is used to overcome the lack of both
high-spatial frequencies and phase from the measurements.
Mathematically, CDI comes down to recovering a signal from
the magnitude of its Fourier transform, a problem known as
phase-retrieval. The problem is in general ill-posed, and a
common approach to overcome this ill-posedeness is to exploit
prior information on the signal. A variety of methods have
been developed that use such prior information, which may
be the signal’s support, non-negativity, or real-space magnitude
[3], [4]. The problem becomes more difficult when attempting
to recover features that are sub-wavelength (i.e. to achieve
super-resolution) - as this corresponds to measuring only a
truncated part of the Fourier spectrum - where high spatial
frequencies (above the cutoff frequency νc = 1

λ ) are lost.
We suggest to use the signal’s sparsity as prior knowledge
to help regularize the combined problem of phase-retrieval
and super-resolution. Existing approaches aimed at recovering
sparse signals from their Fourier magnitude belong to two

main categories: SDP-based techniques [5], [6], [7], [8] and
algorithms that use alternate projections (Fienup-type meth-
ods) [9]. To solve the combined problem of phase-retrieval
and super-resolution, we formulate the problem as a quadratic
optimization problem, and solve it using a recently developed
efficient sparse quadratic solver named GESPAR [10].

Section III describes the use of sparsity to determine the
shape of a temporal signal, namely an optical pulse, from
measurements taken by a slow photodiode. This problem is
equivalent to linear deconvolution of a low-pass filtered signal,
and to regularize it we use the fact that the signal is sparse in
a Gauss-Hermite function basis, where the two parameters of
the exact representation are found as part of the algorithm.

II. COHERENT DIFFRACTIVE IMAGING (CDI)

Coherent Diffractive Imaging (CDI) is an imaging technique
where intricate features are algorithmically reconstructed from
measurements of the freely-diffracting intensity pattern ([1],
[2]). In CDI, an object is illuminated by a coherent plane
wave (LASER light), and the far-field diffraction intensity is
measured, corresponding to the squared absolute value of the
Fourier transform of the object. Recent advances in making
lasers in the x-ray regime and in the extreme ultraviolet
have made this technique very important for a variety of
applications, among them structural biology: mapping out the
structure of proteins that cannot be crystallized. However, the
physics underlying the propagation of electromagnetic waves
acts as a low-pass filter, effectively truncating high Fourier
components, setting a fundamental constraint on imaging
systems: the finest feature that can be recovered in imaging
microscopes is larger than one half of the optical wavelength
(the so-called diffraction limit). This condition naturally also
limits CDI: the resolution in all current work on CDI is limited
by the diffraction limit [11].

Over the past few decades, several sub-wavelength imaging
techniques were developed, but none of them works at a ’single
shot’: they all involve scanning or integration over many
acquired images generated by sub-wavelength light sources.
These methods include Scanning Near-Field Microscope ([12],
[13]), scanning a sub-wavelength “hot spot” ([14], [15]), or
using multiple exposures with fluorescent particles ([16], [17],
[18]). Due to the nature of these techniques - they cannot
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be used for real-time imaging of dynamic processes (say,
a chemical reaction that evolves with time). On the other
hand, CDI, being a ‘single shot’ imaging technique, is suitable
for ultra-fast imaging, but it lacks sub-wavelength resolution.
Here, we present and demonstrate experimentally a method to
enhance CDI resolution beyond the diffraction limit, based on
prior knowledge that the object is sparse in a known basis.

A. Problem Formulation

In a CDI setting, an object is illuminated by a coherent plane
wave, and the far field diffraction pattern intensity is measured.
This measurement, in the Fraunhofer approximation, is propor-
tional to the magnitude of the object’s Fourier transform, up
to the cut-off frequency 1/λ, where λ is the wavelength of
the light [11]. Therefore, mathematically, the sub-wavelength
CDI problem becomes the problem of recovering a 2D signal
from only the magnitude of its truncated Fourier transform.
This relation can be written as:

I = |LFb|2, (1)

where I is the measured far-field intensity, F is the 2D Fourier
transform operator, L is a low-pass filter with cutoff frequency
1/λ, and b is the sought 2D object. The operator | · | denotes
element-wise absolute value.

Inverting (1), i.e. finding b from I, L, F is an ill-posed
problem, both because the high frequency information is
lost, and due to the loss of Fourier phase information. The
problem, therefore, is phase-retrieval of a 2D object, combined
with bandwidth-extrapolation. In order to invert this ill-posed
problem, some additional information is needed, e.g. prior
knowledge on the sought signal.

In this work, we focus on objects that can be represented
compactly in a known basis, i.e. b = Ax where A is a known
basis and x is a sparse vector, namely, containing a small
number of nonzero elements. In this case, (1) can be rewritten
as:

I = |LFAx|2, (2)

where x is sparse. The sparsity prior has been used for sub-
wavelength imaging [19], but only when the Fourier phase
was also known, yielding a linear problem. However, since the
measurements in our setting are not linear in the unknown (but
quadratic), standard linear sparse inversion algorithms cannot
be used, and a method to find a sparse solution to a set of
quadratic equations is required.

B. Solution Method and Experimental Results

The problem of sub-wavelength CDI can be viewed as con-
sisting of two sub-problems: Phase retrieval, and bandwidth
extrapolation. The problem of phase retrieval, i.e. recovering
a signal from the magnitude of its Fourier transform arises
in applications such as holography and crystallography, and
there has been a vast amount of work dealing with it ([4],
[3]). Usually, some prior knowledge about the object is used
(e.g. known support or known real-space magnitude), and the
different constraints are imposed iteratively. These techniques

Fig. 1. EUV Experimental setup.

have been used in the context of CDI [2], but their application
has always been limited to the information contained within
numerical aperture of the system.

Here, we use a recently developed efficient phase-retrieval
method called GESPAR [10] that is shown here to also
be able to deal with the loss of high-frequencies, by using
the prior knowledge that the sought object is sparse in a
known basis. GESPAR is described in detail in [10], including
extensive numerical performance evaluation. Basically, it seeks
a solution to the following problem:

minx f(x) ≡
N∑
i=1

(xTAix− ci)
2

s.t. ||x||0 ≤ s, (3)

where Ai is a set of measurement matrices - in the Fourier
phase retrieval problem they are simply defined by Ai = FiF

T
i

with Fi being the ith row of the DFT matrix (or the truncated
DFT matrix, in the low-pass scenario), s is an upper limit to
the signal’s cardinality, and ci are the measurements (Fourier
magnitude squared). GESPAR iteratively performs a local
search to update the signal’s support, and given a current
support - uses the damped Gauss Newton method for finding
a local minimum of the objective function.

We demonstrate sparsity based super-resolution CDI ex-
perimentally, using the setup shown in Fig. 1 [20]. A mask
made of titanium foil (200nm thick) containing a pattern of
900nm wide slits, is coherently illuminated by a coherent beam
of wavelength λ= 35nm. The far field diffraction pattern is
then measured on an EUV CCD. Although the wavelength is
shorter than the size of the features (slit width), there is still
loss of high spatial frequencies, due to the finite size of the
EUV CCD, that imposes a practical cutoff spatial frequency
on the measured Fourier magnitude.

The reconstruction of the slit pattern is shown in Fig. 2.
Since the slits are much longer than their width, the problem
is effectively treated as 1D. Figure 2a shows the measured
part of the Fourier magnitude. Figure 2b shows the recovery
that would have been obtained from the measured part of the
spectrum if the Fourier phase had been measured. The blurring
effect due to the low-pass filtering of the system is clearly
visible, compared to Fig. 2c which contains the true object in
blue. Also in Fig. 2c, the recovered object, using GESPAR,
is shown in dotted red. The sparsity basis used here was
the basis of 900nm wide rectangles (overlapping). Figure 2d
shows the super-resolution explicitly by plotting the original
and recovered Fourier spectrum, containing spatial frequencies
up to 3 times higher than the measured data (Fig. 2a). Similar
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Fig. 2. EUV recovery results. a) Measured Fourier magnitude. b) Blurred
object, obtained using (Unmeasured) Fourier phase. c) True (blue) and
recovered (dotted red) object. d) True (blue) and recovered (red) Fourier
magnitude, exhibiting the method’s super resolution (bandwidth extrapolation)
capability.

sparsity based super-resolution from Fourier magnitude has
also been demonstrated for a truly sub-wavelength and 2D case
[21], where an object consisting of an arrangement of holes
100nm in diameter was illuminated by a 532nm laser, and
successfully recovered from measurements of the magnitude
of its truncated Fourier spectrum.

III. TEMPORAL SUPER RESOLUTION - ULTRASHORT
PULSE MEASUREMENT

The resolution limits of instruments for diagnostics of short
laser pulses are defined by their physical properties. For ex-
ample, the spectral response functions of photodiodes exhibit
a low-pass-filter form, with a characteristic cutoff-frequency
fc, where fc ∼ 1/τc, with τc being the response time of the
photodiode. These physical resolution limits, however, do not
take into account additional information about the structure of
the measured pulse, e.g. that the pulse is sparse in some rep-
resentation. Here, we propose and demonstrate experimentally
the employment of sparsity-based concepts for enhancing the
resolution of time-resolved instruments, significantly beyond
their inherent physical limits. The algorithm used for this
problem uses the measured data to find a proper basis for
compact mathematical representation of the input signal, and
then utilizes it for extrapolating the resolution significantly
beyond the inherent physical limit of the measurement device.

A. Problem Formulation

The sought pulse x(t) is assumed to be sparse in a Gauss
Hermite (GH) basis, comprising of the following set of func-

tions: Ψn = Hn(t) · e−
(t−t0)2

∆t2 , n ∈ N, where Hn(t) is the
nth Hermite polynomial, and the values of the two parameters
∆t and t0 are unknown in advance. The detected signal is
obtained by measuring the output of a photodiode with a
temporal PSF of u(t), so that the measured signal is given
by the convolution: y(t) = x(t) ∗ u(t). Since the temporal
response of the photodiode, which determines u(t) is slower
than the features in x(t), the system acts as a low-pass filter.

The problem is therefore to recover x(t) given y(t) and u(t),
where it is assumed that x(t) is sparse under the correct GH
representation, i.e. using the proper values for the unknown
parameters ∆t and t0.

B. Solution Method and Experimental Results

The solution algorithm first finds the parameter t0, which
is determined by the center of the mass of the blurred
measured signal y(t). Then, scanning over possible values of
the remaining parameter ∆t, for each value a basis pursuit
denoising problem is solved - i.e. minimizing the l1 norm
while conforming to the measurements. The value that is se-
lected for ∆t is the one that yields the sparsest representation.
The sought input signal x(t) is given directly by selecting the
solution to the l1 minimization problem corresponding to the
chosen parameters ∆t and t0.

We present below an experimental example of super-
resolution in a photodiode [22]: We constructed a laser pulse
containing three peaks by splitting and later combining an
uncompressed pulse from a Ti:Sapphire laser amplifier system
into three routes with different lengths. The experimental
results are displayed in Fig. 3. The laser pulse is detected
by a “slow” photodiode that is characterized by 1000ps rise-
time and also by a “fast” photodiode (175ps rise time) –
whose measured signal we use as a comparison (Fig. 3a).
We first measure the temporal and spectral responses of the
photodiodes by detecting the output for a 30fs pulse (Figs. 3b
and 3c). Figure 3d shows the measurement taken by the slow
and fast photodiodes, while their Fourier spectra are shown
in Fig. 3e. We implement our reconstruction scheme on the
detected signals from both the slow and fast detectors. For
comparison, we also implement Wiener deconvolution on the
two detected signals. The reconstructed intensity and spectral
profiles are shown in Figs. 3f and 3g, respectively.

As shown, the Wiener deconvolution reconstruction using
the slow photodetector is very different form the Wiener
deconvolution and the sparsity-based reconstructions using
the fast photodiode. This large deviation shows that Wiener
deconvolution reconstruction using the slow photodiode signal
completely fails to reconstruct the correct profile. On the
other hand, our sparsity-based reconstruction using the slow
photodiode signal matches very well the reconstructions using
the fast photodiode (compare the solid black curve with the
solid blue and dash red curves in Figs. 3f and 3g). This
correspondence shows that our reconstruction exhibits super-
resolution, significantly better than Wiener deconvolution.
Comparing the deviations in Fig. 3g, we conclude that our
sparsity-based reconstruction has increased the resolution by
a factor of ∼ 5 over the Wiener deconvolution.

IV. CONCLUSION

In this work, we have presented a technique facilitating
the reconstruction of sub-wavelength features, along with
phase retrieval, at an unprecedented resolution for single-shot
experiments. Then, we demonstrated the use of similar sparsity
based ideas to obtain temporal super-resolution in ultrashort
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Fig. 3. Experimental super-resolution using a photodiode. a) Experimental setup: a laser pulse probed by a slow (1000ps rise time) and fast (175ps rise-time)
photodiodes. b) Measured impulse response of the slow photodiode (red) and the fast photodiode (blue). c) Fourier spectrum of the impulse response functions
shown in b). Signals (d) and spectra (e) measured by the slow (red) and fast (blue) photodiodes. Reconstructed pulse-shapes (f) and their spectra (g) obtained
using our algorithm, given the measured signals from the slow (solid black) and fast (solid blue) and reconstruction using Wiener deconvolution using the
measured signals from the slow (dashed green) and fast (dashed red) photodiode. The reconstructed pulse shape using the slow photodiode signal matches
very well the measured fast-photodiode pulse.

pulse measurement. Fundamentally, sparsity-based concepts
can be implemented in all imaging systems and achieve sub-
wavelength resolution without additional hardware, given only
that the image is sparse in a known basis. For example,
sparsity-based methods could considerably improve the CDI
resolution with x-ray free electron laser [23], without hardware
modification.
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